Resource Flows: Material Flow Accounting (MFA), Life Cycle Analysis (LCA), Input Output Networks and other methods

Resource Flows: Material Flow Accounting (MFA), Life Cycle Analysis (LCA), Input Output Networks and other methods




From Materials Flow and Sustainability



Key Terms:

  • MFA (Material Flow Analysis)
  • MFCA (Material Flow Cost Accounting)
  • LCA (Life Cycle Analysis)
  • SFA (Substance Flow Analysis)
  • MF WIO (Material Flow Waste Input Output)
  • IO LCA (Input Output Life Cycle Analysis)
  • KLEM (Capital, Labor, Energy, Materials)
  • PIOT ( Physical Input Output Tables)
  • MIOT (Monetary Input Output Tables)
  • IO MFN (Input Output Material Flow Network)
  • Social Ecology
  • Industrial Ecology
  • Urban Metabolism
  • Industrial Symbiosis
  • Industrial Metabolism
  • M-P Chains (Material Product Chains)
  • Global Value Chains
  • National Footprint Accounts
  • Inter Industry Analysis
  • Input Output Economics
  • End to End Supply Chains
  • Supply and Use Tables
  • Material Balance
  • Mass Balance
  • Biophysical Economics
  • Ecological Economics
  • Environmentally Extended Input Output Analysis (EE-IOA)
  • Stocks and Flows
  • MaTrace
  • Global MaTrace


Software for Data Analysis and Visualization:


This article lists several other software packages for MFA/SFA



Material Flow Analysis

From Practical Handbook of MATERIAL FLOW ANALYSIS

Material flow analysis (MFA) is a systematic assessment of the flows and stocks of materials within a system defined in space and time. It connects the sources, the pathways, and the intermediate and final sinks of a material. Because of the law of the conservation of matter, the results of an MFA can be controlled by a simple material balance comparing all inputs, stocks, and outputs of a process. It is this distinct characteristic of MFA that makes the method attractive as a decision-support tool in resource management, waste management, and environmental management.

An MFA delivers a complete and consistent set of information about all flows and stocks of a particular material within a system. Through balancing inputs and outputs, the flows of wastes and environmental loadings become visible, and their sources can be identified. The depletion or accumulation of material stocks is identified early enough either to take countermeasures or to promote further buildup and future utilization. Moreover, minor changes that are too small to be measured in short time scales but that could slowly lead to long-term damage also become evident.

Anthropogenic systems consist of more than material flows and stocks (Figure 1.1). Energy, space, information, and socioeconomic issues must also be included if the anthroposphere is to be managed in a responsible way. MFA can be performed without considering these aspects, but in most cases, these other factors are needed to interpret and make use of the MFA results. Thus, MFA is frequently coupled with the analysis of energy, economy, urban planning, and the like.

In the 20th century, MFA concepts have emerged in various fields of study at different times. Before the term MFA had been invented, and before its comprehensive methodology had been developed, many researchers used the law of conservation of matter to balance processes. In process and chemical engineering, it was common practice to analyze and balance inputs and outputs of chemical reactions. In the economics field, Leontief introduced input–output tables in the 1930s, thus laying the base for widespread application of input–output methods to solve economic problems. The first studies in the fields of resource conservation and environmental management appeared in the 1970s. The two original areas of application were (1) the metabolism of cities and (2) the analysis of pollutant pathways in regions such as watersheds or urban areas. In the following decades, MFA became a widespread tool in many fields, including process control, waste and wastewater treatment, agricultural nutrient management, water-quality management, resource conservation and recovery, product design, life cycle assessment (LCA), and others.


Substance Flow Analysis

From Feasibility assessment of using the substance flow analysis methodology for chemicals information at macro level

SFA is used for tracing the flow of a selected chemical (or group of substances) through a defined system. SFA is a specific type of MFA tool, dealing only with the analysis of flows of chemicals of special interest (Udo de Haes et al., 1997). SFA can be defined as a detailed level application of the basic MFA concept tracing the flow of selected chemical substances or compounds — e.g. heavy metals (mercury (Hg), lead (Pb), etc.), nitrogen (N), phosphorous (P), persistent organic substances, such as PCBs, etc. — through society.

An SFA identifies these entry points and quantifies how much of and where the selected substance is released. Policy measures may address these entry points, e.g. by end‐of‐pipe technologies. Its general aim is to identify the most effective intervention points for policies of pollution prevention. According to Femia and Moll (2005), SFA aims to answer the following questions:

• Where and how much of substance X flows through a given system?

• How much of substance X flows to wastes?
• Where do flows of substance X end up?
• How much of substance X is stored in durable goods?
• Where could substance X be more efficiently utilised in technical processes?
• What are the options for substituting the harmful substance?
• Where do substances end up once they are released into the natural environment?

When an SFA is to be carried out, it involves the identification and collection of data on the one hand, and modelling on the other. According to van der Voet et al. (OECD, 2000), there are three possible ways to ‘model’ the system:

Accounting (or bookkeeping) The input for such a system is the data that can be obtained from trade and production statistics. If necessary, further detailed data can be recovered on the contents of the specific substances in those recorded goods and materials. Emissions and environmental fluxes or concentration monitoring can be used for assessing the environmental flows. The accounting overview may also serve as an identification system for missing or inaccurate data.

Missing amounts can be estimated by applying the mass balance principle. In this way, inflows and outflows are balanced for every node, as well as for the system as a whole, unless accumulation within the system can be proven. This technique is most commonly used in material flow studies, and can be viewed as a form of descriptive statistics. There are, however, some examples of case studies that specifically address societal stocks, and use these as indicator for possible environmental problems in the future (OECD, 2000).

Static modelling is the process whereby the network of flow nodes is translated into a mathematical ‘language’, i.e. a set of linear equations, describing the flows and accumulations as inter‐dependent. Emission factors and distribution factors over the various outputs for the economic processes and partition coefficients for the environmental compartments can be used as variables in the equations. A limited amount of substance flow accounting data is also required for a solution of the linear equations. However, the modelling outcome is determined largely by the substance distribution patterns.

Static modelling can be extended by including a so‐called origin analysis in which the origins of one specific problematic flow can be traced on several levels. Three levels may be distinguished:

• direct causes derived directly from the nodes balance (e.g one of the direct causes of cadmium (Cd) load in soil is atmospheric deposition);

• economic sectors (or environmental policy target groups) directly responsible for the problem. This is identified by following the path back from node to node to the point of emission (e.g. waste incineration is one of the economic sectors responsible for the cadmium load in soil);

• ultimate origins found by following the path back to the system boundaries (e.g. the extraction, transport, processing and trade of zinc (Zn) ore is one of the ultimate origins of the cadmium load in soil).

Furthermore, the effectiveness of abatement measures can be assessed with static modelling by recording timelines on substances (OECD, 2000).

Dynamic modelling is different to the static SFA model, as it includes substance stocks accumulated in society as well as in various materials and products in households and across the built‐up environments.

For SFA, stocks play an important role in the prediction of future emissions and waste flows of products with a long life span. For example, in the case of societal stocks of PVC, policy makers need to be supplied with information about future PVC outflows. Today’s stocks become tomorrow’s emissions and waste flows. Studies have been carried out on the analysis of accumulated stocks of metals and other persistent toxics in the societal system. Such build‐ups can serve as an ‘early warning’ signal for future emissions and their potential effects, as one day these stocks may become obsolete and recognisably dangerous, e.g. as in the case of asbestos, CFCs, PCBs and mercury in chlor‐alkali cells. As the stocks are discarded, they end up as waste, emissions, factors of risks to environment and population. In some cases, this delay between inflow and outflow can be very long indeed.

Stocks of products no longer in use, but not yet discarded, are also important. These stocks could include: old radios, computers and/or other electronic equipment stored in basements or attics, out‐of‐use pipes still in the ground, obsolete stocks of chemicals no longer produced but still stored, such as lead paints and pesticides. These ‘hibernating stocks’ are likely to be very large, according to OECD estimates (2000). Estimating future emissions is a crucial issue if environmental policy makers are to anticipate problems and take timely, effective action. In order to do this, stocks cannot be ignored. Therefore, when using MFA or SFA models for forecasting, stocks should play a vital part. Flows and stocks interact with each other. Stocks grow when the inflows exceed the outflows of a (sub)‐system and certain outflows of a (sub)‐system are disproportional to the stocks.

For this dynamic model, additional information is needed for the time dimension of the variables, e.g. the life span of applications in the economy; the half life of compounds; the retention time in environmental compartments and so forth. Calculations can be made not only on the ‘intrinsic’ effectiveness of packages of measures, but also on their anticipated effects in a specific year in the future. They can also be made on the time
it takes for such measures to become effective. A dynamic model is therefore most suitable for scenario analysis, provided that the required data are available or can be estimated with adequate accuracy (OECD, 2000).


Life Cycle Analysis (LCA)


What is Life Cycle Assessment (LCA)?

As environmental awareness increases, industries and businesses are assessing how their activities affect the environment. Society has become concerned about the issues of natural resource depletion and environmental degradation. Many businesses have responded to this awareness by providing “greener” products and using “greener” processes. The environmental performance of products and processes has become a key issue, which is why some companies are investigating ways to minimize their effects on the environment. Many companies have found it advantageous to explore ways of moving beyond compliance using pollution prevention strategies and environmental management systems to improve their environmental performance. One such tool is LCA. This concept considers the entire life cycle of a product (Curran 1996).

Life cycle assessment is a “cradle-to-grave” approach for assessing industrial systems. “Cradle-to-grave” begins with the gathering of raw materials from the earth to create the product and ends at the point when all materials are returned to the earth. LCA evaluates all stages of a product’s life from the perspective that they are interdependent, meaning that one operation leads to the next. LCA enables the estimation of the cumulative environmental impacts resulting from all stages in the product life cycle, often including impacts not considered in more traditional analyses (e.g., raw material extraction, material transportation, ultimate product disposal, etc.). By including the impacts throughout the product life cycle, LCA provides a comprehensive view of the environmental aspects of the product or process and a more accurate picture of the true environmental trade-offs in product and process selection.

The term “life cycle” refers to the major activities in the course of the product’s life-span from its manufacture, use, and maintenance, to its final disposal, including the raw material acquisition required to manufacture the product. Exhibit 1-1 illustrates the possible life cycle stages that can be considered in an LCA and the typical inputs/outputs measured.


Methods of LCA

  • Process LCA
  • Economic Input Output LCA
  • Hybrid Approach



From Life cycle analysis (LCA) and sustainability assessment





Material Input Output Network Analysis

  • PIOT (Physical Input Output Tables)
  • MIOT (Monetary Input Output Tables)
  • WIOT (Waste Input Output Tables
  • MRIO (Multi Regional Input Output)
  • SUT (Supply and Use Tables)


From Industrial ecology and input-output economics: An introduction

Although it was the pioneering contributions by Duchin (1990, 1992) that explicitly made the link between input–output economics and industrial ecology, developments in input– output economics had previously touched upon the core concept of industrial ecology.

Wassily Leontief himself incorporated key ideas of industrial ecology into an input– output framework. Leontief (1970) and Leontief and Ford (1972) proposed a model where the generation and the abatement of pollution are explicitly dealt with within an extended IO framework. This model, which combines both physical and monetary units in a single coefficient matrix, shows how pollutants generated by industries are treated by so-called ‘pollution abatement sectors.’ Although the model has been a subject of longstanding methodological discussions (Flick, 1974; Leontief, 1974; Lee, 1982), its structure captures the essence of industrial ecology concerns: abatement of environmental problems by exploiting inter-industry interactions. As a general framework, we believe that the model by Leontief (1970) and Leontief and Ford (1972) deserves credit as an archetype of the various models that have become widely referred to in the field of industrial ecology during the last decade, including mixed-unit IO, waste IO and hybrid Life Cycle Assessment (LCA) models (Duchin, 1990; Konijn et al., 1997; Joshi, 1999; Nakamura and Kondo, 2002; Kagawa et al., 2004; Suh, 2004b). Notably, Duchin (1990) deals with the conversion of wastes to useful products, which is precisely the aim of industrial ecology, and subsequently, as part of a study funded by the first AT&T industrial ecology fellowship program, with the recovery of plastic wastes in particular (Duchin and Lange, 1998). Duchin (1992) clarifies the quantity-price relationships in an input–output model (a theme to which she has repeatedly returned) and draws its implications for industrial ecology, which has traditionally been concerned exclusively with physical quantities.

Duchin and Lange (1994) evaluated the feasibility of the recommendations of the Brundtland Report for achieving sustainable development. For that, they developed an input–output model of the global economy with multiple regions and analyzed the consequences of the Brundtland assumptions about economic development and technological change for future material use and waste generation. Despite substantial improvements in material efficiency and pollution reduction, they found that these could not offset the impact of population growth and the improved standards of living endorsed by the authors of the Brundtland Report.

Another pioneering study that greatly influenced current industrial ecology research was described by Ayres and Kneese (1969) and Kneese et al. (1970), who applied the massbalance principle to the basic input–output structure, enabling a quantitative analysis of resource use and material flows of an economic system. The contribution by Ayres and Kneese is considered the first attempt to describe the metabolic structure of an economy in terms of mass flows (see Ayres, 1989; Haberl, 2001).

Since the 1990s, new work in the areas of economy-wide research about material flows, sometimes based on Physical Input–Output Tables (PIOTs), has propelled this line of research forward in at least four distinct directions: (1) systems conceptualization (Duchin, 1992; Duchin, 2005a); (2) development of methodology (Konijn et al., 1997; Nakamura and Kondo, 2002; Hoekstra, 2003; Suh, 2004c; Giljum et al., 2004; Giljum and Hubacek, 2004; Dietzenbacher, 2005; Dietzenbacher et al., 2005; Weisz and Duchin, 2005); (3) compilation of data (Kratterl and Kratena, 1990; Kratena et al., 1992; Pedersen, 1999; Ariyoshi and Moriguchi, 2003; Bringezu et al., 2003; Stahmer et al., 2003); and (4) applications (Duchin, 1990; Duchin and Lange, 1994, 1998; Hubacek and Giljum, 2003; Kagawa et al., 2004). PIOTs generally use a single unit of mass to describe physical flows among industrial sectors of a national economy. In principle, such PIOTs are capable of satisfying both column-wise and row-wise mass balances, providing a basis for locating materials within a national economy.3 A notable variation in this tradition, although it had long been used in input–output economic studies starting with the work of Leontief, is the mixed-unit IO table. Konijn et al. (1997) analyzed a number of metal flows in the Netherlands using a mixed-unit IO table, and Hoekstra (2003) further improved both the accounting framework and data. Unlike the original PIOTs, mixed-unit IOTs do not assure the existence of column-wise mass-balance, but they make it possible to address more complex questions. Lennox et al. (2004) present the Australian Stocks and Flows Framework (ASFF), where a dynamic IO model is implemented on the basis of a hybrid input–output table. These studies constitute an important pillar of industrial ecology that is generally referred to as Material Flow Analysis (MFA).4

Although the emphasis in industrial ecology has arguably been more on the materials side, energy issues are without doubt also among its major concerns. In this regard, energy input–output analysis must be considered another important pillar for the conceptual basis of ‘industrial energy metabolism.’ The oil shock in the 1970s stimulated extensive research on the structure of energy use, and various studies quantifying the energy associated with individual products were carried out (Berry and Fels, 1973; Chapman, 1974). Wright (1974) utilized Input–Output Analysis (IOA) for energy analysis, which previously had been dominated by process-based analysis (see also Hannon, 1974; Bullard and Herendeen, 1975; Bullard et al., 1978). The two schools of energy analysis, namely process analysis and IO energy analysis, were merged by Bullard and Pillarti (1976) into hybrid energy analysis (see also van Engelenburg et al., 1994; Wilting,1996). Another notable contribution to the area of energy analysis was made by Cleveland et al. (1984), who present a comprehensive analysis, using the US input–output tables, quantifying the interconnection of energy and economic activities from a biophysical standpoint (see Cleveland, 1999; Haberl, 2001; Kagawa and Inamura, 2004). These studies shed light on how an economy is structured by means of energy flows and informs certain approaches to studying climate change (see for example Proops et al., 1993; Wier et al., 2001).

What generally escapes attention in both input–output economics and industrial ecology, despite its relevance for both, is the field of Ecological Network Analysis (ENA). Since Lotka (1925) and Lindeman (1942), material flows and energy flows have been among the central issues in ecology. It was Hannon (1973) who first introduced concepts from input–output economics to analyze the structure of energy utilization in an ecosystem. Using an input–output framework, the complex interactions between trophic levels or ecosystem compartments can be modeled, taking all direct and indirect relationships between components into account. Hannon’s approach was adopted, modified and re-introduced by various ecologists. Finn (1976, 1977), among others, developed a set of analytical measures to characterize the structure of an ecosystem using a rather extensive reformulation of the approach proposed by Hannon (1973). Another important development in the tradition of ENA is so-called environ analysis. Patten (1982) proposed the term ‘environ’ to refer to the relative interdependency between ecosystem components in terms of nutrient or energy flows. Results of environ analysis are generally presented as a comprehensive network flow diagram, which shows the relative magnitudes of material or energy flows between the ecosystem components through direct and indirect relationships (Levine, 1980; Patten, 1982). Ulanowicz and colleagues have broadened the scope of materials and energy flow analysis both conceptually and empirically (Szyrmer and Ulanowicz, 1987). Recently Bailey et al. (2004a, b) made use of the ENA tradition to analyze the flows of several metals through the US economy. Suh (2005) discusses the relationship between ENA and IOA and shows that Patten’s environ analysis is similar to Structural Path Analysis (SPA), and that the ENA framework tends to converge toward the Ghoshian framework rather than the Leontief framework although using a different formalism (Defourny and Thorbecke, 1984; Ghosh, 1958).



From Materials and energy flows in industry and ecosystem netwoks : life cycle assessment, input-output analysis, material flow analysis, ecological network flow analysis, and their combinations for industrial ecology




From Regional distribution and losses of end-of-life steel throughout
multiple product life cycles—Insights from the global multiregional
MaTrace model


From Feasibility assessment of using the substance flow analysis methodology for chemicals information at macro level




Sankey Diagram

From Hybrid Sankey diagrams: Visual analysis of multidimensional data for understanding resource use

Sankey diagrams are used to visualise flows of energy, materials or other resources in a variety of applications. Schmidt (2008a) reviewed the history and uses of these diagrams. Originally, they were used to show flows of energy, first in steam engines, more recently for modern systems such as power plants (e.g. Giuffrida et al., 2011) and also to give a big-picture view of global energy use (Cullen and Allwood, 2010). As well as energy, Sankey diagrams are widely used to show flows of resources (Schmidt, 2008a). Recent examples in this journal include global flows of tungsten (Leal-Ayala et al., 2015), biomass in Austria (Kalt, 2015), and the life-cycle of car components (Diener and Tillman, 2016). More widely, they have been used to show global production and use of steel and aluminium (Cullen et al., 2012; Cullen and Allwood, 2013), and flows of natural resources such as water (Curmi et al., 2013). In all of these cases, the essential features are: (1) the diagram represents physical flows, related to a given functional unit or period of time; and (2) the magnitude of flows is shown by the link1 widths, which are proportional to an extensive property of the flow such as mass or energy (Schmidt, 2008b). Creating these diagrams is supported by software tools such as e!Sankey (ifu Hamburg, 2017), and several Life Cycle Assessment (LCA) and Material Flow Analysis (MFA) packages include features to create Sankey diagrams.


From Hybrid Sankey diagrams: Visual analysis of multidimensional data for understanding resource use




Please see my related posts:

Wassily Leontief and Input Output Analysis in Economics

Shell Oil’s Scenarios: Strategic Foresight and Scenario Planning for the Future

Water | Food | Energy | Nexus: Mega Trends and Scenarios for the Future

Stock Flow Consistent Input Output Models (SFCIO)

Measuring Globalization: Global Multi Region Input Output Data Bases (G-MRIO)

Production and Distribution Planning : Strategic, Global, and Integrated

Intra Industry Trade and International Production and Distribution Networks

Trends in Intra Firm Trade of USA

Development of Global Trade and Production Accounts: UN SEIGA Initiative

Accounting For Global Carbon Emission Chains

Stock Flow Consistent Models for Ecological Economics

Jay W. Forrester and System Dynamics

Classical roots of Interdependence in Economics

Stock-Flow Consistent Modeling





Key Sources of Research:



Paris, 24 October 2000

Click to access 4425421.pdf

An Innovative Accounting Framework for the Food-Energy-Water Nexus
Application of the MuSIASEM approach to three case studies

Click to access i3468e.pdf

Creating your own online data visualizations: SankeyMatic, OMAT, CartoDB

Hybrid Sankey diagrams: Visual analysis of multidimensional data for understanding resource use


Visualization of energy, cash and material flows with a Sankey diagram

UPIOM: A New Tool of MFA and Its Application to the Flow of Iron and Steel Associated with Car Production

Material flow analysis


Economy-wide Material Flow Accounting. Introduction and Guide.

Version 1.0

Article · January 2015

Fridolin Krausmann, Helga Weisz, Nina Eisenmenger, Helmut Schütz, Willi Haas
and Anke Schaffartzik

Society’s Metabolism The Intellectual History of Materials Flow Analysis,

Part II, 1970-1998

Marina Fischer-Kowalski and Walter Huttler

Institute for Intenliscipiimny
Studies of Austrian Universities
University of Vienna
Vienna, Austria

Click to access Fischer-Kowalski_Huttler_1998.pdf

“Society’s Metabolism. The Intellectual History of Material Flow Analysis,

Part I, 1860 – 1970″.

Fischer-Kowalski, M.


Journal of Industrial Ecology 2(1): 61-78

Analysis on energy–water nexus by Sankey diagram: the case of Beijing

Unified Materials Information System (UMIS): An Integrated Material Stocks and Flows Data Structure

First published: 07 February 2018

Material Flow Cost Accounting with Umberto®

Schmidt, A. Hache, B.; Herold, F.; Götze, U.

Click to access 2-05_Material_Flow_Cost_Accounting.pdf

Click to access WEF_Richards.pdf

Study on Data for a Raw Material System Analysis: Roadmap and Test of the Fully Operational MSA for Raw Materials

Final Report

BIO by Deloitte


Prepared for the European Commission, DG GROW.

Integrated Analysis of Energy, Material and Time Flows in Manufacturing Systems

e! Sankey

Visualization of energy, cash and material flows with a Sankey diagram

The most popular software for creating Sankey diagrams. Visualize the cash, material & energy flow or value streams in your company or along the supply chain. Share these appealing diagrams in reports or presentations.


Oliver Cencic* and Helmut Rechberger
Institute for Water Quality Resources and Waste Management
Vienna University of Technology
Vienna A-1040, Austria

Click to access CENCIC%20and%20RECHBERGER%202008%20Material%20Flow%20Analysis%20with%20Software%20STAN.pdf

Recovery of Key Metals in the Electronics Industry in the
People’s Republic of China: An Opportunity in Circularity
(Initial Findings)

January 2018

Created as Part of the Platform for Accelerating the Circular Economy

Click to access 39777_Recovery_Key_Metals_Electronics_Industry_China_Opportunity_Circularity_report_2018.pdf

Sankey diagram





Click to access material_flows_in_the_united_states.pdf

Industrial ecology and input-output economics: An introduction

Sangwon Suh


Click to access Industrial-ecology-and-input-output-economics-An-introduction.pdf

A Handbook of Industrial Ecology

Robert Ayres

Leslie Ayres

Physical and Monetary Input-Output Analysis:
What Makes the Difference?

Helga Weisz
Klagenfurt University
Faye Duchin
Rensselaer Polytechnic Institute

Click to access ab5b067aacafe555acbc1e077b5b42e1fc92.pdf

Theory of materials and energy flow analysis in ecology and economics

Sangwon Suh


Click to access Materials-and-energy-flows-in-industry-and-ecosystem-networks.pdf

Conceptual Foundations and Applications of Physical Input-Output Tables

Stefan Giljum

Hubacek Klaus


Click to access Conceptual-Foundations-and-Applications-of-Physical-Input-Output-Tables.pdf

Alternative Approaches of Physical Input-Output Analysis to Estimate
Primary Material Inputs of Production and Consumption Activities

Stefan Giljum

Hubacek Klaus


Click to access 00b7d51cc1257aba71000000.pdf

Industrial Ecology: A Critical Review

Click to access IE.pdf

EXIOPOL – development and illustrative analyses of a detailed global
multiregional environmentally-extended supply and use table/input output

Article in Economic Systems Research · May 2013

Click to access 561d652a08aecade1acb3bfc.pdf

Developing the Sectoral Environmental Database for Input- Output Analysis: Comprehensive Environmental Data Archive of the U.S.

Article in Economic Systems Research · December 2005

Click to access 0c960531f1d910cda1000000.pdf

The material basis of the global economy

Worldwide patterns of natural resource extraction and their
implications for sustainable resource use policies

Arno Behrens,⁎, Stefan Giljum, Jan Kovanda, Samuel Niza

Click to access Material_Basis.pdf

The Sankey Diagram in Energy and Material Flow Management

Part I: History

The Sankey Diagram in Energy and Material Flow Management

Part II: Methodology and Current Applications

First published: 28 April 2008

Material and Energy Flow Analysis

First published: 23 March 2010

8. Biophysical economics: from physiocracy to ecological economics and industrial

Cutler J Cleveland

Article · January 1999

Click to access 0deec51b7274ca0035000000.pdf

The Use of Input-Output Analysis in REAP to allocate Ecological Footprints and Material Flows to Final Consumption Categories

Waste Input–Output Material Flow Analysis of Metals in the Japanese Economy

Shinichiro Nakamura1 and Kenichi Nakajima2

Click to access 2550.pdf

A multi-regional environmental input-output model to quantify embodied material flows

Stefan Giljum a, Christian Lutz b,Ariane Jungnitz

Click to access Giljum%20et%20al_IIOA.pdf

Click to access jungnitzgiljumlutz.pdf

Material Flow Accounting and Analysis (MFA)

A Valuable Tool for Analyses of Society-Nature Interrelationships

Entry prepared for the Internet Encyclopedia of Ecological Economics

Friedrich Hinterberger *, Stefan Giljum, Mark Hammer

Sustainable Europe Research Institute (SERI)

Click to access material.pdf

Human Ecology: Industrial Ecology

Faye Duchin
Rensselaer Polytechnic Institute

Stephen H. Levine
Tufts University

Click to access rpi0603.pdf

Development of the Physical Input Monetary Output Model for Understanding Material Flows within Ecological -Economic Systems

XU Ming


Click to access 2010010204.pdf

Accounting for raw material equivalents of traded goods

A comparison of input-output approaches in physical, monetary, and mixed units

Click to access working-paper-87-web.pdf

Material Flow Accounts and Policy. Data for Sweden 2004

by: Annica Carlsson, Anders Wadeskog, Viveka Palm, Fredrik Kanlén Environmental Accounts, Statistics Sweden,


Click to access mi1301_2004a01_br_mift0701.pdf

Economy-wide Material Flow Accounts with Hidden Flows for Finland: 1945–2008

Jukka Hoffrén (ed.)

Click to access isbn_978-952-244-233-8.pdf

Analysing environmental impacts of the global, interlinked economy

Konstantin Stadler, Richard Wood

Industrial Ecology Programme, NTNU, Norway


An Input-Output Analysis

Using Material Flow Analysis for Sustainable Materials Management: Part of the Equation for Priority Setting

Frederick W. Allen

Priscilla A. Halloran

Angela H. Leith

M. Clare Lindsay

“Supply-Extension versus Use-Extension in Environmentally Extended Input-Output Modelling: Analyzing Physical Flows within the Austrian Economy”

Hanspeter Wieland*1, Nina Eisenmenger2, Dominik Wiedenhofer2, Martin Bruckner1

Click to access IO-Workshop-2017_Wieland_abstract.pdf

A Material Flow Analysis of Phosphorus in Japan
The Iron and Steel Industry as a Major Phosphorus Source

Kazuyo Matsubae-Yokoyama, Hironari Kubo, Kenichi Nakajima,
and Tetsuya Nagasaka

Click to access gpa_101_wa.pdf

Material Flows and Economic Development
Material Flow Analysis of the Hungarian Economy

Click to access IR-02-057.pdf

The material footprint of nations

Thomas O. Wiedmanna,b,c,1, Heinz Schandlb,d, Manfred Lenzenc, Daniel Moranc,e, Sangwon Suhf, James Westb, and Keiichiro Kanemotoc

Click to access 6271.full.pdf

Calculation of direct and indirect material inputs by type of raw material and economic activities

Paper presented at the London Group Meeting
19 – 21 June 2006

Karl Schoer

Wiesbaden, July 2006

Click to access Raw_material_Germany.pdf

Waste Input-Output  (WIO) Table

Shinichiro NAKAMURA and Yasushi KONDO,

Waste Input-Output Analysis: Concepts and Application to Industrial Ecology.

In Series: Eco-Efficiency in Industry and Science,

Vol. 26, Springer, February 2009.

Economy Wide Material Flow Accounting (EW-MFA)

Material flow analyses in technosphere and biosphere
– metals, natural resources and chemical products

Viveka Palm

Click to access FULLTEXT01.pdf

The UK waste input-output table: Linking waste generation to the UK economy.

Salemdeeb, R., Al-Tabbaa, A. and Reynolds, C.

Waste Management & Research, 34 (10). pp. 1089-1094.

Click to access Re_Main_Document.pdf

Multiregion input / output tables and material footprint accounts session

Discussion of aspects of of MRIO / material footprinting work, and considerations for developing and resource based economies.

James West | Senior experimental scientist
25 May 2016

Click to access 10_MFand_MRIO_CSIRO_English.pdf

Construction of hybrid Input-Output tables for E3 CGE model calibration and consequences on energy policy analysis


Click to access 6988.pdf

Prospects and Drivers of Future European Resource Requirements
Evidence from a Multi-National Macroeconomic Simulation Study*

Paper prepared for the final WIOD Conference
Groningen, April 2012
Martin Distelkamp, Mark Meyer** and Bernd Meyer

GWS mbH Osnabrueck

Click to access Paper_Distelkamp_et_al.pdf

Material Flow Analysis to Evaluate Sustainability in Supply Chains

Haroune Zaghdaoui, Anicia Jaegler, Natacha Gondran, Jairo Montoya-Torres

Click to access 4189.pdf

Physical and monetary input–output analysis: What makes the difference?

Helga Weisz , Faye Duchin

Click to access Physical%20and%20monetary%20input-output.pdf

Recycling and Remanufacturing in Input-Output Models

Randall W Jackson, West Virginia University
Taelim Choi, Georgia Institute of Technology
Nancey Green Leigh, Georgia Institute of Technology

Click to access WP2008-4.pdf

The Water Footprint Assessment Manual

Click to access TheWaterFootprintAssessmentManual_2.pdf

The New Plastics Economy
Rethinking the future of plastics

Click to access WEF_The_New_Plastics_Economy.pdf

A Comparison of Environmental Extended Input-Output (EEIO) and Process Data in Life Cycle Assessment

Click to access Comparing-Input-Output-and-Process-LCA-Data.CE-form2-LM-edits.pdf

Managing Logistics Flows Through Enterprise Input-Output Models

V. Albino1, A. Messeni Petruzzelli1 and O. G. Okogbaa2

Click to access InTech-Managing_logistics_flows_through_enterprise_input_output_models.pdf

Social Metabolism and Accounting Approaches


Ecological economics

Input-Output Analysis in Laptop Computer Manufacturing


Final Project Report, March 2004

Click to access 0304_WP_Biffaward_Steel_Al-Final.pdf

A Framework for Sustainable Materials Management

Joseph Fiksel

Click to access Framework_for_SMM.pdf

Energy and water conservation synergy in China: 2007–2012

Yi Jina, Xu Tanga,⁎, Cuiyang Fenga, Mikael Höökb

Click to access Energy-and-water-conservation-synergy-in-China-2007-2012.pdf

Contributions of Material and Energy Flow Accounting to Urban Ecosystems Analysis: Case Study Singapore

Niels B. Schulz

Click to access IAS-WP136.pdf

A review of recent multi-region input–output models used for consumption-based
emission and resource accounting

Thomas Wiedmann

Physical Input Output (PIOT) Tables:  Developments and Future

Click to access 35_20100427111_Hoekstra-PIOT.pdf

Materials and energy flows in industry and ecosystem netwoks : life cycle assessment, input-output analysis, material flow analysis, ecological network flow analysis, and their combinations for industrial ecology

Suh, S,


Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part I: Tracing Flows

First published: 08 February 2008

Applying Ecological Input‐Output Flow Analysis to Material Flows in Industrial Systems: Part II: Flow Metrics

First published: 08 February 2008

Local systems, global impacts
Using life cycle assessment to analyse the
potential and constraints of industrial symbioses

rising to global challenges

25 Years of Industrial Ecology

Literature study on Industrial Ecology

Gerard Fernandez Gonzalez






Practical Handbook of MATERIAL FLOW ANALYSIS

Paul H. Brunner and Helmut Rechberger

Handbook of Input-Output Economics in Industrial Ecology

edited by Sangwon Suh

Taking Stock of Industrial Ecology

edited by Roland Clift, Angela Druckman

Ecological Input-Output Analysis-Based Sustainability Analysis of Industrial Systems


Cristina Piluso and Yinlun Huang*


Helen H. Lou

An Extended Model for Tracking Accumulation Pathways of Materials Using Input–Output Tables: Application to Copper Flows in Japan

Ryosuke Yokoi * ID , Jun Nakatani ID and Yuichi Moriguchi


Kálmán KÓSI and András TORMA




Metabolism of Cities






Feasibility assessment of using the substance flow analysis methodology for chemicals information at macro level




Structural Investigation of Aluminum in the US Economy using Network Analysis

Philip Nuss, Wei-Qiang Chen Hajime Ohno, and T.E. Graedel


Click to access 2016_SA_Network-Analysis-Aluminum_EST.pdf





Economy-wide Material Flow Analysis and Indicators





Regional distribution and losses of end-of-life steel throughout
multiple product life cycles—Insights from the global multiregional
MaTrace model


Stefan Pauliuka,∗, Yasushi Kondob, Shinichiro Nakamurab, Kenichi Nakajimac





MaTrace: Tracing the Fate of Materials over Time and Across Products in Open-Loop Recycling

Shinichiro Nakamura,*,† Yasushi Kondo,† Shigemi Kagawa,‡ Kazuyo Matsubae,§ Kenichi Nakajima,⊥ and Tetsuya Nagasaka§






Tracing China’s energy flow and carbon dioxide flow based on Sankey diagrams


Feiyin Wang1,2 • Pengtao Wang1,2 • Xiaomeng Xu1,2 • Lihui Dong1,2 • Honglai Xue1,2 • Shuai Fu1,2 • Yingxu Ji


Click to access Tracing-Chinas-energy-flow-and-carbon-dioxide-flow-based-on-Sankey-diagrams.pdf





Materials Flow and Sustainability





Life-cycle assessment






Scientific Applications International Corporation (SAIC) 11251 Roger Bacon Drive
Reston, VA 20190


Click to access chapter1_frontmatter_lca101.pdf





Life cycle analysis (LCA) and sustainability assessment


Click to access IntroductiontoLCAAU32013.pdf

Author: Mayank Chaturvedi

You can contact me using this email mchatur at the rate of AOL.COM. My professional profile is on

2 thoughts on “Resource Flows: Material Flow Accounting (MFA), Life Cycle Analysis (LCA), Input Output Networks and other methods”

Leave a Reply

Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out /  Change )

Google photo

You are commenting using your Google account. Log Out /  Change )

Twitter picture

You are commenting using your Twitter account. Log Out /  Change )

Facebook photo

You are commenting using your Facebook account. Log Out /  Change )

Connecting to %s