What are Problem Structuring Methods?

What are Problem Structuring Methods?

Source: PROBLEM STRUCTURING IN PUBLIC POLICY ANALYSIS

Problem structuring methods provide a methodological complement to theories of policy design. Arguably, structuring a problem is a prerequisite of designing solutions for that problem.4 In this context, problem structuring methods are metamethods. They are “about” and “come before” processes of policy design and other forms of problem solving.

Source: Strategic Development: Methods and Models

Key Terms

  • PSM
  • Soft OR
  • Hard OR
  • Unstructured Problems
  • Systems
  • System Sciences
  • SODA Strategic Options Development and Analysis
  • SSM Soft Systems Methodology
  • SCA Strategic Choice Approach
  • Robustness Analysis
  • Drama Theory
  • Interactive Planning
  • Scenario Planning
  • Critical Systems Heuristics
  • SWOT
  • Strategic Assumption Surfacing and Testing
  • Viable Systems Model VSM
  • System Dynamics
  • Decision Conferencing
  • Multi-methodology
  • John Mingers
  • Jonathan Rosenhead
  • John Morecroft
  • MC Jackson
  • Operational Research
  • Problem Structuring Methods PSM
  • Stafford Beer
  • Robert Dyson
  • Jay Forrester
  • Russell Ackoff
  • Robert Flood
  • Peter Checkland
  • Group Model Building
  • Behaviour Operational Research
  • Community Operations Research
  • Ill-structured versus Well-structured Problems
  • Wicked Versus Tame Problems
  • Ill-Defined versus Well-Defined Problems
  • Nigel Howard
  • Metagames
  • Hypergames

Problem Structuring Methods

Source: Past, present and future of problem structuring methods

The problematic situations for which PSMs aim to provide analytic assistance are characterized by

  • Multiple actors,
  • Differing perspectives, 
  • Partially conflicting interests,  
  • Significant intangibles,
  • Perplexing uncertainties.

The relative salience of these factors will differ between situations (and different methods are selective in the emphasis given to them). However, in all cases there is a meta-characteristic, that of complexity, arising out of the need to comprehend a tangle of issues without being able to start from a presumed consensual formulation. For an introduction to PSMs, see Rosenhead and Mingers, 2001

Source: Problem structuring methods in action

Strategic options development and analysis (SODA) is a general problem identification method that uses cognitive mapping as a modelling device for eliciting and recording individuals’ views of a problem situation. The merged individual cognitive maps (or a joint map developed within a workshop session) provide the framework for group discussions, and a facilitator guides participants towards commitment to a portfolio of actions.

Soft systems methodology (SSM) is a general method for system redesign. Participants build ideal-type conceptual models (CMs), one for each relevant world view. They compare them with perceptions of the existing system in order to generate debate about what changes are culturally feasible and systemically desirable. 

Strategic choice approach (SCA) is a planning approach centered on managing uncertainty in strategic situations. Facilitators assist participants to model the interconnectedness of decision areas. Interactive comparison of alternative decision schemes helps them to bring key uncertainties to the surface. On this basis the group identifies priority areas for partial commitment, and designs explorations and contingency plans.

Robustness analysis is an approach that focuses on maintaining useful flexibility under uncertainty. In an interactive process, participants and analysts assess both the compatibility of alternative initial commitments with possible future configurations of the system being planned for, and the performance of each configuration in feasible future environments. This enables them to compare the flexibility maintained by alternative initial commitments. 

Drama theory draws on two earlier approaches, meta games and hyper games. It is an interactive method of analysing co-operation and conflict among multiple actors. A model is built from perceptions of the options available to the various actors, and how they are rated. Drama theory looks for the “dilemmas” presented to the actors within this model of the situation. Each dilemma is a change point, tending to cause an actor to feel specific emotions and to produce rational arguments by which the model itself is redefined. When and only when such successive redefinitions have eliminated all dilemmas is the actors’ joint problem fully resolved. Analysts commonly work with one of the parties, helping it to be more effective in the rational-emotional process of dramatic resolution. (Descriptions based substantially on Rosenhead, 1996.)

Given the ill-defined location of the PSM/non- PSM boundary, there are a number of other methods with some currency that have at least certain family resemblances. These include critical systems heuristics (CSH) (Ulrich, 2000), interactive planning (Ackoff, 1981), and strategic assumption surfacing and testing (Mason and Mitroff, 1981). Other related methods which feature in this special issue are SWOT (Weihrich, 1998), scenario planning (Schoemaker, 1998), and the socio-technical systems approach (Trist and Murray, 1993). Those which are particularly close to the spirit of PSMs in at least some of their modes of use, and therefore thought to merit inclusion in Rosenhead and Mingers (2001), are the following:

Viable systems model (VSM) is a generic model of a viable organization based on cybernetic principles. It specifies five notional systems that should exist within an organization in some form––operations, co-ordination, control, intelligence, and policy, together with the appropriate control and communicational relationships. Although it was developed with a prescriptive intent, it can also be used as part of a debate about problems of organizational design and redesign (Harnden, 1990). 

System dynamics(SD) is a way of modelling peoples’ perceptions of real-world systems based especially on causal relationships and feedback. It was developed as a traditional simulation tool but can be used, especially in combination with influence diagrams (causal–loop diagrams), as a way of facilitating group discussion (Lane, 2000; Vennix, 1996).

Decision conferencing is a variant of the more widely known “decision analysis”. Like the latter, it builds models to support choice between decision alternatives in cases where the consequences may be multidimensional; and where there may be uncertainty about future events which affect those consequences. What distinguishes decision conferencing is that it operates in workshop mode, with one or more facilitators eliciting from the group of participants both the structure of the model, and the probabilities and utilities to be included in it. The aim is cast, not as the identification of an objectively best solution, but as the achievement of shared understanding, the development of a sense of common purpose, and the generation of a commitment to action (Phillips, 1989; Watson and Buede, 1987).

There are a number of texts which present a different selection of “softer” methods than do Rosenhead and Mingers. These include Flood and Jackson (1991), who concentrate on systems-based methods, Dyson and O’Brien (1998) who consider a range of hard and soft approaches in the area of strategy formulation; and Sorensen and Vidal (1999) who make a wide range of methods accessible to a Scandinavian readership. There is clearly an extensive repertoire of methods available. In fact it is common to combine together a number of PSMs, or PSMs together with more traditional methods, in a single intervention––a practice known as multimethodology (Mingers and Gill, 1997). So the range of methodological choice is wider even than a simple listing of methods might suggest.

Source: Are project managers ready for the 21th challenges? A review of problem structuring methods for decision support

Benefits of Problem Structuring Methods

Source: Are project managers ready for the 21th challenges? A review of problem structuring methods for decision support

My Related Posts

Systems and Organizational Cybernetics

Micro Motives, Macro Behavior: Agent Based Modeling in Economics

Production and Distribution Planning : Strategic, Global, and Integrated

Drama Theory: Choices, Conflicts and Dilemmas

Drama Theory: Acting Strategically

Quantitative Models for Closed Loop Supply Chain and Reverse Logistics

Hierarchical Planning: Integration of Strategy, Planning, Scheduling, and Execution

Stock Flow Consistent Input Output Models (SFCIO)

Stock Flow Consistent Models for Ecological Economics

Gantt Chart Simulation for Stock Flow Consistent Production Schedules

Shell Oil’s Scenarios: Strategic Foresight and Scenario Planning for the Future

Water | Food | Energy | Nexus: Mega Trends and Scenarios for the Future

Global Trends, Scenarios, and Futures: For Foresight and Strategic Management

HP’s Megatrends

Global Flow of Funds: Statistical Data Matrix across National Boundaries

Credit Chains and Production Networks

Supply Chain Finance (SCF) / Financial Supply Chain Management (F-SCM)

Financial Social Accounting Matrix

Morris Copeland and Flow of Funds accounts

Systems Biology: Biological Networks, Network Motifs, Switches and Oscillators

Oscillations and Amplifications in Demand-Supply Network Chains

Portfolio Planning Models for Corporate Strategic Planning

Cyber-Semiotics: Why Information is not enough

Truth, Beauty, and Goodness: Integral Theory of Ken Wilber

Key Sources of Research

Understanding behaviour in problem structuring methods interventions with activity theory.

White, L., Burger, K., & Yearworth, M. (2016).

European Journal of Operational Research, 249(3), 983-1004. https://doi.org/10.1016/j.ejor.2015.07.044

https://research-information.bris.ac.uk/en/publications/understanding-behaviour-in-problem-structuring-methods-interventi

“Is Value Focused Thinking a Problem Structuring Method or Soft OR or what?”

Keisler, Jeffrey,

(2012). 

Management Science and Information Systems Faculty Publication Series. Paper 42.


http://scholarworks.umb.edu/msis_faculty_pubs/42

Rational Analysis for a Problematic World Revisited: Problem Structuring Methods for Complexity, Uncertainty and Conflict

John Mingers, Jonathan Rosenhead

2001 Book Second ed.

The characteristics of problem structuring methods: A literature review

https://www.research.manchester.ac.uk/portal/en/publications/the-characteristics-of-problem-structuring-methods-a-literature-review(e4bbf605-6df1-4a33-853c-2bc17dc18a8e).html

Problem structuring methods in action

John Mingers a,*, Jonathan Rosenhead b

a Warwick Business School, University of Warwick, Coventry CV4 7AL, UK 

b London School of Economics, Houghton Street, London WC2A 2AE, UK

European Journal of Operational Research 152 (2004) 530–554

Click to access Problem%20structuring%20methods%20in%20action.pdf

https://www.semanticscholar.org/paper/Problem-structuring-methods-in-action-Mingers-Rosenhead/752fdb5dfaddbc0a7946f281a9c454d6f4203542

Click to access Problem%20structuring%20methods%20in%20action.pdf

Introduction to the Special Issue: Teaching Soft O.R., Problem Structuring Methods, and Multimethodology.

John Mingers, Jonathan Rosenhead, (2011)

INFORMS Transactions on Education 12(1):1-3. http://dx.doi.org/10.1287/ited.1110.0073

Click to access Mingers-Rosenberg-PSM-SoftOR.pdf

https://pubsonline.informs.org/toc/ited/12/1

Problem Structuring Methods, 1950s-1989: An Atlas of the Journal Literature

Georgiou, Ion and Heck, Joaquim,

(June 26, 2017).

Available at SSRN: https://ssrn.com/abstract=3077648 or http://dx.doi.org/10.2139/ssrn.3077648

https://papers.ssrn.com/sol3/papers.cfm?abstract_id=3077648

“An Investigation on the Effectiveness of a Problem Structuring Method in a GroupDecision-Making Process”

Thaviphoke, Ying.

(2020). Doctor of Philosophy (PhD), Dissertation, Engineering Management, Old Dominion University,

DOI: 10.25777/cx7x-z403
https://digitalcommons.odu.edu/emse_etds/182

What’s the Problem? An Introduction to Problem Structuring Methods

Jonathan Rosenhead

Published Online:1 Dec 1996

https://doi.org/10.1287/inte.26.6.117

PROBLEM STRUCTURING IN PUBLIC POLICY ANALYSIS

William N. Dunn
Graduate School of Public and International Affairs University of Pittsburgh

Past, present and future of problem structuring methods

J Rosenhead

London School of Economics, London, UK

Journal of the Operational Research Society (2006), 1–7

Framing and Reframing as a Creative Problem Structuring Aid

Victoria J Mabin, and John Davies Management Group Victoria University of Wellington PO Box 600 Wellington
email: vicky.mabin@vuw.ac.nz

Tel +4-495 5140
email: john.davies@vuw.ac.nz Tel + 4-471 5382
Fax + 4-471 2200

Reassessing the scope of OR practice: the influences of problem structuring methods and the analytics movement

Ranyard, J.C., Fildes, R. and Hun, T-I (2014).

(LUMS Working Paper 2014:8).

Lancaster University: The Department of Management Science.

Reasoning maps for decision aid: an integrated approach for problem-structuring and multi-criteria evaluation


G Montibeller1∗, V Belton2, F Ackermann2 and L Ensslin3

1London School of Economics, London, UK; 2University of Strathclyde, Glasgow, UK; and 3Federal University of Santa Catarina (UFSC), Floriano ́polis, Brazil

Journal of the Operational Research Society (2008) 59, 575–589

Special issue on problem structuring research and practice

Fran Ackermann • L. Alberto Franco • Etie ̈nne Rouwette • Leroy White

EURO J Decis Process (2014) 2:165–172 DOI 10.1007/s40070-014-0037-6

Soft OR Comes of Age – But Not Everywhere!

Mingers, John (2011)

ISSN 0305-0483. https://doi.org/10.1016/j.omega.2011.01.005

Omega, 39 (6). pp. 729-741

An Investigation on the Effectiveness of a Problem Structuring Method in a Group Decision-Making Process

Ying Thaviphoke
Old Dominion University, ythav001@odu.edu

2020

OR competences: the demands of problem structuring methods

Richard John Ormerod

EURO J Decis Process (2014) 2:313–340

DOI 10.1007/s40070-013-0021-6

Hard OR, Soft OR, Problem Structuring Methods, Critical Systems Thinking: A Primer

Hans G. Daellenbach

Department of Management University of Canterbury Christchurch, NZ

h.daellenbach@mang.canterbury.ac.nz

Are project managers ready for the 21th challenges? A review of problem structuring methods for decision support

José Ramón San Cristóbal Mateo

Emma Diaz Ruiz de Navamuel

María Antonia González Villa

https://repositorio.unican.es/xmlui/bitstream/handle/10902/13669/ijispm-050203.pdf?sequence=1

Towards a new framework for evaluating systemic problem structuring methods

Gerald Midgley  Robert Y. Cavana  John Brocklesby , Jeff L. Foote  David R.R. Wood , Annabel Ahuriri-Driscoll 

European Journal of Operational Research 229 (2013) 143–154

https://www.sciencedirect.com/science/article/pii/S0377221713000945

Problem structuring methods

Jonathan Rosenhead1

Chapter in book

(1) The London School of Economics and Political Science, London, England

Kluwer Academic Publishers 2001

https://doi.org/10.1007/1-4020-0611-X_806

Encyclopedia of Operations Research and Management Science

2001 Edition | Editors: Saul I. Gass, Carl M. Harris

Beyond Problem Structuring Methods: Reinventing the Future of OR/MS

Author(s): M. C. Jackson

Source: The Journal of the Operational Research Society, Vol. 57, No. 7, Special Issue: Problem Structuring Methods (Jul., 2006), pp. 868-878

Published by: Palgrave Macmillan Journals on behalf of the Operational Research Society

Stable URL: https://www.jstor.org/stable/4102274

Strategic Development: Methods and Models

Robert G. Dyson (Editor)Frances A. O’Brien (Editor)

ISBN: 978-0-471-97495-6 

May 1998 346 Pages

https://www.wiley.com/en-al/Strategic+Development:+Methods+and+Models-p-9780471974956

Group Model Building:
Problem Structuring, Policy Simulation and Decision Support

David F. Andersen, University at Albany
Jac A.M. Vennix, Radboud University Nijmegen George P. Richardson, University at Albany Etiënne A.J.A. Rouwette, Radboud University Nijmegen

Reassessing the Scope of OR Practice: the Influences of Problem Structuring Methods and the Analytics Movement

J. C. Ranyard, R. Fildes* and Tun-I Hu

The Department of Management Science Lancaster University Management School Lancaster LA1 4YX
UK

Cybernetics Group: A Brief History of American Cybernetics

Cybernetics Group: A Brief History of American Cybernetics

The Cybernetics Group

Focusing on the Macy Foundation conferences, a series of encounters that captured a moment of transformation in the human sciences.

In this sequel to his acclaimed double biography, John von Neumann and Norbert Wiener, Steve Heims recounts another fascinating story in twentieth-century intellectual history – a series of encounters that captured a moment of transformation in the human sciences. Focusing on the Macy Foundation conferences, which were designed to forge connections between wartime science and postwar social science, Heims’s richly detailed account explores the dialogues that emerged among a remarkable group that included Wiener, von Neumann, Margaret Mead, Gregory Bateson, Warren McCulloch, Kurt Lewin, Molly Harrower, and Lawrence Kubie. Heims shows how those dialogues shaped ideas in psychology, sociology, anthropology, and psychiatry.

 

Cybernetics

THE MACY CONFERENCES 1946-1953. THE COMPLETE TRANSACTIONS

Between 1946 and 1953, the Josiah Macy, Jr. Foundation sponsored a series of conferences aiming to bring together a diverse, interdisciplinary community of scholars and researchers who would join forces to lay the groundwork for the new science of cybernetics. These conferences, known as the Macy conferences, constituted a landmark for the field. They were the first to grapple with new terms such as information and feedback and to develop a cohesive and broadly applicable theory of systems that would become equally applicable to living beings and machines, economic and cognitive processes, and many scholarly disciplines. The concepts that emerged from the conferences come to permeate thinking in many fields, including biology, neurology, sociology, ecology, economics, politics, psychoanalysis, linguistics, and computer science.

This book contains the complete transcripts of all ten Macy conferences and the guidelines for the conference proceedings. These transcripts are supplemented with an introduction by Claus Pias that charts the significance of the Macy conferences to the history of science.

 

Macy Conferences Participants

A series of 10 focused meetings spanning 1942 to 1953 sponsored by the Josiah Macy Foundation, which brought together

  • John von Neumann
  • Norbert Wiener
  • Margaret Mead
  • Karl Lashley
  • Ross Ashby
  • Warren McCulloch
  • Walter Pitts
  • Arturo Rosenblueth
  • Claude Shannon
  • Heinz von Foerster
  • Rafael Lorente de No ́
  • R. Karl Pribram
  • Duncan Luce
  • Donald M. MacKay
  • Gregory Bateson
  • Kurt Lewin
  • Molly Harrower
  • Lawrence Kubie
  • Filmer S. C. Northrop
  • Lawrence K. Frank
  • Heinrich Kluver
  • Leonard J Savage
  • Ralph Girard and many others

 

Stuart A. Umpleby

A Short History of Cybernetics in the United States

The Origin of Cybernetics

Cybernetics as a field of scientific activity in the United States began in the years after World War II. Between 1946 and 1953 the Josiah Macy, Jr. Foundation sponsored a series of conferences in New York City on the subject of „Circular Causal and Feedback Mechanisms in Biological and Social Systems.“ The chair of the conferences was Warren McCulloch of MIT. Only the last five conferences were recorded in written proceedings. These have now been republished.1 After Norbert Wiener published his book Cybernetics in 1948,2 Heinz von Foerster suggested that the name of the conferences should be changed to „Cybernetics: Circular Causal and Feedback Mechanisms in Biological and Social Systems.“ In this way the meetings became known as the Macy Conferences on Cybernetics.

In subsequent years cybernetics influenced many academic fields – computer science, electrical engineering, artificial intelligence, robotics, management, family therapy, political science, sociology, biology, psychology, epistemology, music, etc. Cybernetics has been defined in many ways: as control and communication in animals, machines, and social systems; as a general theory of regulation; as the science or art of effective organization; as the art of constructing defensible metaphors, etc.3 The term ‚cybernetics‘ has been associated with many stimulating conferences, yet cybernetics has not thrived as an organized scientific field within American universities. Although a few cybernetics programs were established on U.S. campuses, these programs usually did not survive the retirement or death of their founders. Quite often transdisciplinary fields are perceived as threatening by established disciplines.

Relative to other academic societies the meetings on cybernetics tended to have more than the usual controversy, probably due to the wide variety of disciplines represented by the participants. Indeed Margaret Mead contributed an article,

Cybernetics of Cybernetics, to the proceedings of the first conference of the American Society for Cybernetics, in which she suggested that cyberneticians should apply their knowledge of communication to how they communicate with each other.4

Interpretations of Cybernetics

Not everyone originally connected with cybernetics continued to use the term. The original group of cyberneticians created approximately four research traditions.

  • The cybernetics of Alan Turing and John von Neumann became computer science, AI, and robotics. Turing5 formulated the concept of a Universal Turing Machine – a mathematical description of a computational device. He also devised the Turing test – a way of determining whether a computer program displays „artificial intelligence“.6 The related professional societies are the Association for Computing Machinery and the American Association for Artificial Intelligence.
  • Norbert Wiener’s cybernetics became part of electrical engineering. This branch of cybernetics includes control mechanisms, from thermostats to automated assembly lines. The Institute of Electrical and Electronics Engineers, including the Systems, Man, and Cybernetics Society, is the main professional society. The principal concern is systems engineering.
  • Warren McCulloch’s cybernetics became „second order cybernetics“. McCulloch chaired the Macy Foundation conferences. He sought to understand the functioning of the nervous system and thereby the operation of the brain and the mind. The American Society for Cybernetics has continued this tradition.
  • Gregory Bateson and Margaret Mead pursued research in the social sciences, particularly anthropology, psychology, and family therapy. Work on the cybernetics of social systems is being continued in the American Society for Cybernetics and the Socio-Cybernetics Group within the International Sociological Association.

Other groups can also be identified. For example, a control systems group within psychology was generated by the work of William Powers.7 Biofeedback or neuro- feedback is a subject of investigation by some researchers in medicine and psycho- logy. The Santa Fe Institute has developed simulation methods based on the ideas of self-organizing systems and cellular automata.8 Some members of the International Society for the Systems Sciences have an interest in management cybernetics.

This paper recounts about sixty years of the history of cybernetics in the United States, divided into five year intervals. The emphasis will be on the third and fourth groups, McCulloch’s cybernetics and social cybernetics.

Early 1940s

In 1943 two landmark papers were published. Warren McCulloch and Walter Pitts wrote, A Logical Calculus of the Ideas Immanent in Nervous Activity.9 This article sought to understand how a network of neurons functions so that we experience what we call „an idea.“ They presented their explanation in mathematical form.

Arthuro Rosenblueth, Norbert Wiener and Julian Bigelow published Behavior, Purpose, Teleology.10 They observed behavior, which they interpreted as purposeful, and then sought to explain how this phenomenon could happen without teleology, using only Aristotle’s efficient cause. Also in the early 1940s Wiener worked on a radar-guided anti-aircraft gun.

Late 1940s

In the late 1940s the early Macy Conferences were held in New York City.11 They were attended by scientists including Norbert Wiener, Julian Bigelow, John von Neumann, Margaret Mead, Gregory Bateson, Ross Ashby, Grey Walter, and Heinz von Foerster. By 1949 three key books were published: Von Neumann’s and Morgenstern’s Theory of Games and Economic Behavior,12 Wiener’s (1948) Cybernetics: Or Control and Communication in the Animal and the Machine,13 and Shannon’s and Weaver’s (1949) The Mathematical Theory of Communication.14 These books defined a new science of information and regulation.

Early 1950s

In the early 1950s more Macy conferences took place. This time proceedings were published with Heinz von Foerster as editor. Meanwhile the first commercial com- puters were manufactured.

Late 1950s

In the 1950s the CIA was concerned about the possibility of brain-washing and mind control. Under the code name MKUltra experiments with LSD and other drugs were conducted at Harvard University and elsewhere.15 Some of the money for this research was channeled through the Macy Foundation. In one incident, a CIA employee was given LSD without his knowledge. Apparently he thought he was going mad and jumped out a window of a hotel in New York City. Ted Kaczynski, the Unabomber, when he was a student at Harvard, was an experimental subject of these mind control experiments.16

Early checkers-playing programs were written and raised the possibility of artifi- cial intelligence.17 In 1956 at a conference at Dartmouth University people interested in studying the brain and people interested in creating computer programs parted ways. Neurophysiologists valued work that illuminated the nature of cognition. Engineers valued work that led to useful machines. Thereafter the people interested in cybernetics and those interested in artificial intelligence had little interaction.

Following a sabbatical year working with Arthuro Rosenblueth and Warren McCulloch, Heinz von Foerster founded the Biological Computer Laboratory (BCL) at the University of Illinois in 1958. During the 1960s and early 1970s BCL was the leading center for cybernetics research in the U.S. Frequent visitors were Humberto Maturana, Francisco Varela, Gordon Pask, and Lars Loefgren. Graduates included Klaus Krippendorff, Alfred Inselberg, Crayton Walker, Roger Conant, and Stuart Umpleby.  During the same period the Mental Health Research Institute (MHRI) at the University of Michigan was the leading center for general systems research in the U.S. The founding director of MHRI was James G. Miller. Other systems scientists at MHRI were Kenneth E. Boulding, Anatol Rapoport, Richard L. Meier, and John R. Platt.

Early 1960s

In the early 1960s several conferences on self-organizing systems were held.18 One of these conferences was held in 1961 at the University of Illinois’s Allerton Park.19 As a result of an invitation made at this conference, Ross Ashby moved from England to Illinois. The work on self-organizing systems was a forerunner to the field of study now called ‚complexity‘ or ‚complex systems‘.

Although the Macy Foundation Conferences ended in 1953, the American Society for Cybernetics (ASC) was not founded until 1964. This seems rather late. Actually the ASC was founded not so much to continue the work of the Macy conferences but rather as a result of the Cold War.20 During the Presidential campaign in 1960, when John F. Kennedy was elected, there was talk about a „missile gap“ between the United States and the Soviet Union. Not long thereafter there began to be talk about a „cybernetics gap.“ Some people in the Soviet Union thought cybernetics would provide the theory they needed to operate their centrally planned economy.

Consequently, the Soviet government generously funded cybernetics research. Some people in the U.S. government then feared that the U.S. might fall behind in a criti- cal area of research, if this country did not also fund cybernetics research.

In Washington, DC, a cybernetics luncheon club was meeting. The participants included Paul Henshaw, Atomic Energy Commission; Carl Hammer, Univac; Jack Ford, CIA; Douglas Knight, IBM; Walter Munster; Bill Moore, lawyer. This group founded the American Society for Cybernetics (ASC). The founding ceremony was held at the Cosmos Club in Washington, DC. A grant from the National Science Foundation helped the Society to establish the Journal of Cybernetics. A conference on the social impact of cybernetics was held at Georgetown University in 1964.21 The first conference arranged by the ASC was held in 1967 at the National Bureau of Standards in Gaithersburg, MD.22

Late 1960s

Social movements in the United States – against the Viet Nam war and for civil rights, women’s rights, and environmental protection – produced a time of student activism on campuses. In terms of research it was a productive period for the Bio- logical Computer Laboratory (BCL) at the University of Illinois.23

Early 1970s

At a meeting of the American Society for Cybernetics in 1974 in Philadelphia, Heinz von Foerster introduced the term „second order cybernetics.“24 The Mansfield Amendment, which was an attempt to reduce campus unrest caused by the Viet Nam War, cut off government funds for research that was not related to a military mission, including research at BCL.25

There was an argument between the officers of ASC and the publisher of the Journal of Cybernetics. The dispute was submitted to arbitration, and the publisher won. Thereafter the journal continued to be published, but without ASC involvement. The journal published articles primarily in engineering. However, the field of cybernetics was increasingly emphasizing biology and the social sciences.

Late 1970s

Heinz von Foerster retired from the University of Illinois in 1976 and moved to California. There he communicated with Paul Watzlawick, John Weakland and others at the Mental Research Institute in Palo Alto. During this time second order cybernetics or constructivist epistemology had a significant impact on the field of family therapy.26

In the late 1970s no meetings of the American Society for Cybernetics were held. The people connected with BCL attended meetings of the Society for General Systems Research, which a few years later changed its name to the International Society for the Systems Sciences.

For a few years, due to a conflict among the ASC officers in Washington, DC, there was a rival organization, the American Cybernetics Association (ACA), based in Philadelphia. The two organizations came back together a few years later through the efforts of Barry Clemson, Doreen Steg, Klaus Krippendorff and others. The reorganized society used the ASC name and the ACA by-laws. But the society remained small, usually having fewer than 400 members.

Stuart Umpleby, who received his PhD from the University of Illinois in 1975 and moved to The George Washington University in Washington, DC, received a National Science Foundation (NSF) grant for an Electronic Information Exchange for Small Research Communities. The BCL group moved into cyberspace.27 This group, discussing General Systems Theory, was one of nine academic groups using the Electronic Information Exchange System (EIES) at New Jersey Institute of Technology. For three years in the late 1970s cyberneticians and systems scientists across the United States and a few in Europe communicated with each other using email and computer conferencing via dumb terminals and, initially, 300 baud modems. The long distance telephone charges were paid by the NSF grant. When the grant ran out, there was disappointment that universities would not pay the communications charges. Indeed, it took almost fifteen years before costs declined sufficiently to permit regular email communication among academics.

Early 1980s

As a result of being the moderator of the on-line discussion group, Umpleby was elected president of ASC. A planning conference in 1980 charted a new direction for the Society.28 ASC began organizing conferences again and reestablished connec- tions with its former journal, now called Cybernetics and Systems.

A series of meetings with Soviet scientists was started as a way to bring leading American scientists together to review fundamentals, in particular to discuss second order cybernetics.29 The meetings were funded by the American Council of Learned Societies and the Soviet Academy of Sciences. These meetings were quite productive for exchanging views; however, a controversy with the Soviet side arose over the participation of Vladimir Lefebvre, a Soviet émigré. Prior to glasnost and perestro- ika Lefebvre’s theory30 of two systems of ethical cognition was not accepted by the Soviet government. However, during the break up of the USSR Lefebvre’s work was used by people at the highest levels of government in both the United States and the Soviet Union to prevent miscommunication.31

Lefebvre’s work is being further developed through annual conferences organized by Vladimir Lepsky in the Insti- tute of Psychology of the Russian Academy of Sciences in Moscow. Lefebvre’s theory of reflexive control is being used by psychologists and educators to help with the psychological and cultural difficulties involved in the social, political, and economic transition in Russia.32

Late 1980s

Members of the American Society for Cybernetics began offering tutorials on first and second order cybernetics prior to systems conferences (see Table 1). They were seeking to make a scientific revolution.33 At a conference in St. Gallen, Switzerland, in 1987 the members of the American Society for Cybernetics decided to focus their attention almost exclusively on advancing second order cybernetics.34 The focus on second order cybernetics to the exclusion of other interpretations of cybernetics had the effect of reducing the membership of the ASC to about one hundred mem- bers. However, there was strong interest in second order cybernetics in Europe.35

 

Table 1. Definitions of First and Second Order Cybernetics

Author

First Order Cybernetics

Second Order Cybernetics

von Foerster

The cybernetics of observed systems

The cybernetics of observing system

Pask

The purpose of a model

The purpose of modeler

Varela

Controlled systems

Autonomous systems

Umpleby

Interaction among the vari- ables in a system

Interaction between observer and observed

Umpleby

Theories of social systems

Theories of the interaction between ideas and society

The second Soviet-American conference was held in Tallinn, Estonia, in 1988. Due to glasnost and perestroika the original topics (epistemology, methodology, and management) were expanded to include large-scale social experiments.

 

Early 1990s

In 1990 two symposia on Theories to Guide the Reform of Socialist Societies were held in Washington, DC, and Vienna, Austria.36 These meetings were the beginning of a multi-year effort both to understand the changes occurring in the former Soviet Union from the perspective of social theory and to use knowledge of social systems to guide the transitions.

The work on second order cybernetics was also changing. The members of the ASC had worked almost twenty years on developing and promoting the point of view known as second order cybernetics or constructivism. Some people wanted to move from a period of revolutionary science to a new period of normal science.37 One way to understand the change is to say that the period of engineering cyberne- tics lasted from the mid 1940s to the mid 1970s. The period of biological cybernetics or second order cybernetics lasted from the mid 1970s to the mid 1990s. And the period of social cybernetics began in the mid 1990s (see Table 2).

Late 1990s

Symposia on the transitions in the former Soviet Union continued to be held as part of the European Meetings on Cybernetics and Systems Research. These meetings are held every two years in Vienna, Austria. The symposia bring together scientists from East and West.

In Washington, DC, a series of meetings on the Year 2000 Computer Problem were held with the support of The Washington Post. These meetings were based on the idea that „y2k“ could be regarded as an experiment which would reveal the amount of interconnectedness in our increasingly cybernetic society.38

Niklas Luhmann’s writings in sociology introduced ideas such as constructivism and autopoiesis to social scientists in Europe.39 A Socio-Cybernetics Working Group within the International Sociological Association was established by Felix Geyer and others.

Early 2000s

In the early years of the 21st century large conferences on informatics and cyber- netics were organized by Nagib Callaos and his colleagues in Orlando, FL. One result has been organizing efforts in Latin America stimulated by the conferences in Orlando. Annual conferences on reflexive control began to be held in Moscow

 

Table 2. Three Versions of Cybernetics

Engineering Cybernetics

Biological Cybernetics

Social Cybernetics

The view
of epistemo­ logy

A realist view of epistemology: knowledge is a „picture“ of reality

A biological view of epistemology: how the brain func­ tions

A pragmatic view of epistemology: knowledge is con­ structed to achieve human purposes

A key distinction

Reality vs. Scientific Theories

Realism vs. Constructivism

The biology of cognition vs. the observer as a social participant

The puzzle to be solved

Construct theories which explain ob­ served phenomena

Include the ob­ server within the domain of science

Explain the rela­ tionship between the natural and the social sciences

What must be explained

How the world works

How an individual constructs a „real­ ity“

How people cre­ ate, maintain, and change social sys­ tems through lan­ guage and ideas

A key as­ sumption

Natural processes can be explained by scientific theo­ ries

Ideas about knowl­ edge should be rooted in neuro­ physiology

Ideas are accepted if they serve the observer’s pur­ poses as a social participant

An impor­ tant conse­ quence

Scientific know- ledge can be used to modify natural processes to benefitpeople

If people accept constructivism, they will be more tolerant

By transforming conceptual systems (through persua­ sion, not coercion), we can change society

and may lead to the founding of a Russian Association in the field of cybernetics and systems.

In the International Society for the Systems Sciences there is growing interest in group facilitation and participation methods.40 An increasing number of books about cybernetics appear, frequently by German authors.41 A Heinz von Foerster

Society was established in Vienna to further develop the ideas explored at the Bio- logical Computer Laboratory. A new biography of Norbert Wiener was published which explains the break that occurred between Wiener and McCulloch.42

The „global university system“ created by the Internet and the Bologna process is not only greatly facilitating communication among scientists around the world but is also leading to a new metaphor for the social implications of cybernetics, an alternative metaphor to the „global brain.“43

Questions about the History of Cybernetics

Given the promising and exciting beginnings of cybernetics, the outstanding sci- entists involved, and the subsequent impact of cybernetics on many disciplines, it is curious that the term ‚cybernetics‘ is not widely known or used today, even though most professional people spend several hours a day in cyberspace. Margaret Mead commented on the development of cybernetics at the first ASC conference in 1968:

„We were impressed by the potential usefulness of a language sufficiently sophisticated to be used to solve complex human problems, and sufficiently abstract to make it possible to cross disciplinary boundaries. We thought we would go on to real interdisciplinary research, using this language as a medium. Instead, the whole thing fragmented. Norbert Wiener wrote his book Cybernetics. It fascinated intellectuals and it looked for a while as if the ideas that he expressed would become a way of thought. But they didn’t.“44

Why did the cybernetics movement break up following the Macy Conferences? Perhaps it never came together. People stayed in their home disciplines. Many very thought-provoking meetings were held under the label of cybernetics, but the educational programs that were established did not survive in discipline-oriented universities. When their founders retired, the programs were closed. One conse- quence of the lack of educational programs at universities is that key ideas tend to be reinvented. One example is the work on complex systems centered at the Santa Fe Institute. These writers rarely refer to the work in cybernetics and systems theory.

What prevented unity? There was never agreement on fundamentals. Eric Dent in his doctoral dissertation at The George Washington University provides an explanation of the continuing heterogeneity of the field of cybernetics and systems science.45 Dent claims that after World War II the systems sciences dramatically expanded the scientific enterprise. Specifically, science expanded along eight dimen- sions: causality, determinism, relationships, holism, environment, self-organization, reflexivity, and observation.46 However, not all of the various systems fields chose to emphasize the same dimensions. Indeed, each field chose a unique combination. This meant that the various systems fields did not agree on what the key issues were. As a result each subfield developed its own language, theories, methods, traditions, and results.

These eight dimensions have both united and divided the systems sciences. The dimensions unite the systems sciences because each of the subfields of systems sci- ence uses at least one of the new assumptions, whereas classical science uses none. The dimensions divide the systems sciences because each subfield emphasizes a different dimension or set of dimensions. Hence, issues that are very important in one subfield are less important or do not arise in other subfields. Given different questions, the answers in theories and methods have been different.47 Perhaps in the 21st century the progress made in developing the field of cybernetics in many disciplines will be successfully integrated.

Notes

1  Claus Pias, ed., Cybernetics – Kybernetik: The Macy Conferences 1946–1953, Zürich and Berlin 2004.

2  Norbert Wiener, Cybernetics: or Control and Communication in the Animal and the Machine, Cambridge, MA 1948.

3  Larry Richards, Defining ‚Cybernetics‘ (1987), http://www.asc-cybernetics.org/foundations/definitions.htm.

4  Margaret Mead, Cybernetics of Cybernetics, in: Heinz von Foerster et al., eds., Purposive Systems, New York 1968.

5  Alan Turing, On Computable Numbers, with an Application to the Entscheidungsproblem, in: Pro- ceedings of the London Mathematical Society 42/2 (1936), 230–265. Reprinted in Martin Davis, ed., The Undecidable, New York 1965.

6  Alan Turing, Computing Machinery and Intelligence, in: Mind 59 (1950), 433–460.

7  William Powers, Behavior: the Control of Perception, New York 1973.

8  M. Mitchell Waldrop, Complexity: The Emerging Science at the Edge of Order and Chaos, New York 1992.

9  Warren S. McCulloch and Walter Pitts, A Logical Calculus of the Ideas Immanent in Nervous Activity, in: Bulletin of Mathematical Biophysics 5 (1943), 115–133; reprinted in Warren S. McCulloch, Embodiments of Mind, Cambridge, MA, 1965, 19–39.

10  Arturo Rosenblueth, Norbert Wiener and Julian Bigelow, Behavior, Purpose and Teleology, in: Philosophy of Science 10 (1943), 18–24; reprinted in W. Buckley, ed., Modern Systems Research for the Behavioral Scientist, Chicago 1968, 221–225.

11  Steve J. Heims, The Cybernetics Group, Cambridge, MA 1991.

12  John von Neumann and Oskar Morgenstern, Theory of Games and Economic Behavior, Princeton, NJ 1944.

13  Wiener, Cybernetics.

14  Claude Shannon and Warren Weaver, The Mathematical Theory of Communication, Urbana, Ill. 1949.

15  John Marks, The Search for the Manchurian Candidate, New York 1978.

16  Alston Chase, Harvard and the Unabomber: The Education of an American Terrorist, New York 2003.

17  Arthur Samuel, Some Studies in Machine Learning Using the Game of Checkers in: IBM Journal 3/3 (1959), 210–229.

18  Marshall Yovits and Scott Cameron, eds., Self-Organizing Systems, London 1960; Marshall Yovits, George Jacobi, Gordon Goldstein, eds., Self-Organizing Systems – 1962, Washington 1962.

19  Heinz von Foerster and George W. Zopf Jr., eds., Principles of Self-Organization, New York 1962.

20  Charles Richard Dechert, ed., The Social Impact of Cybernetics, New York 1966.

21  Ibid.

22  Heinz von Foerster et al., eds., Purposive Systems, New York 1968.

23  Albert Müller and Karl H. Müller, eds., An Unfinished Revolution? Heinz von Foerster and the Bio- logical Computer Laboratory, 1958–1976, Wien 2007.

24  Heinz von Foerster, Cybernetics of Cybernetics, in: Klaus Krippendorff, ed., Communication and Control in Society, New York 1979.

25  Stuart Umpleby, Heinz von Foerster and the Mansfield Amendment, in: Cybernetics and Human Knowing 10 (2003), No. 3–4.

26  Paul Watzlawick, The Invented Reality: How do we Know what we Believe we Know? Contributions to Constructivism, New York 1984.

27  Stuart Umpleby, Computer Conference on General Systems Theory: One Year’s Experience, in: M. Henderson and M. MacNaughton, eds., Electronic Communication: Technology and Impacts, Boul- der, CO 1979; Stuart Umpleby and K. Thomas, Applying Systems Theory to the Conduct of Systems Research, in: Anthony Debons ed., Information Science in Action: System Design, vol. l, The Hague 1983.

28  Stuart Umpleby, The 1980 Planning Conference of the American Society for Cybernetics, in: Cyber- netics Forum 10/1 (1981).

29  Stuart Umpleby, American and Soviet Discussions of the Foundations of Cybernetics and General Systems Theory, in: Cybernetics and Systems 18 (1987); Stuart Umpleby and Vadim Sadovsky, eds., A Science of Goal Formulation: American and Soviet Discussions of Cybernetics and Systems Theory, New York 1991.

30  Vladimir A. Lefebvre, Algebra of Conscience: A Comparative Analysis of Western and Soviet Ethical Systems, London 1982.

31  Stuart Umpleby, A Preliminary Inventory of Theories Available to Guide the Reform of Socialist Societies, in: Stuart Umpleby and Robert Trappl, eds., Cybernetics and Systems 22/4 (1991).

32  Stuart Umpleby and Tatyana A. Medvedeva, Psychological Adjustment to Economic and Social Change, in: Reflexive Control 1/1 (2001), 102–112.

33  Stuart Umpleby, On Making a Scientific Revolution, in: Heinz von Foerster, ed., Cybernetics of Cy- bernetics, Urbana 1974; reprinted in 1995, Minneapolis: Future Systems.

34  Stuart Umpleby, Three Conceptions of Conversation, in: Continuing the Conversation: A Newsletter of Ideas in Cybernetics, No. 10, 1987.

35  Stuart Umpleby, Cybernetics of Conceptual Systems, in: Cybernetics and Systems 28/8 (1997), 635– 652.

36  Umpleby, Inventory.

37  Stuart Umpleby, The Science of Cybernetics and the Cybernetics of Science, in: Cybernetics and Systems 21/1 (1990).

38  Stuart Umpleby, Coping with an Error in a Knowledge Society: The Case of the Year 2000 Computer Crisis, in: George E. Lasker et al., eds., Advances in Sociocybernetics and Human Development VIII, Windsor, Canada 2000.

39  Niklas Luhmann, Social Systems. Stanford, CA 1995.

40  Ken Bausch, ed., Special Issue on Agoras of the Global Village, World Futures, 6/1–2 (2004).

41  Müller and Müller, Revolution.

42  Flo Conway and Jim Siegelman, Dark Hero of the Information Age: In Search of Norbert Wiener, the Father of Cybernetics, New York 2005.

43  Stuart Umpleby, Strengthening the Global University System, in: R. Meyer, ed., Perspectives in Higher Education Reform, vol. 12, Alliance of Universities for Democracy, American University in Bulgaria, Blagoevgrad, Bulgaria 2003.

44  Mead, Cybernetics.

45  Eric B. Dent, The Design, Development, and Evaluation of Measures to Survey Worldview in Orga- nizations. Ann Arbor, MI University Microfilms 1996

46  Eric B. Dent, System Science Traditions: Differing Philosophical Assumptions, in: Systems, Journal of the Polish Systems Society 6 (2001), No. 1–2.

47  Stuart Umpleby and Eric B. Dent, The Origins and Purposes of Several Traditions in Systems Theory and Cybernetics, in: Cybernetics and Systems 30 (1999).

 

 

 

 

Please see my related posts

Systems and Organizational Cybernetics

Feedback Thought in Economics and Finance

Reflexivity, Recursion, and Self Reference

Autocatalysis, Autopoiesis and Relational Biology

Socio-Cybernetics and Constructivist Approaches

Cybernetics, Autopoiesis, and Social Systems Theory

Ratio Club: A Brief History of British Cyberneticians

Second Order Cybernetics of Heinz Von Foerster

Steps to an Ecology of Mind: Recursive Vision of Gregory Bateson

Society as Communication: Social Systems Theory of Niklas Luhmann

 

 

Key Sources of Research:

 

 

Whatever Happened to Cybernetics

Kevin Kelly in his book Out of Control

https://kk.org/mt-files/outofcontrol/ch23-a.html

The Cybernetics Group

Steve Heims

https://mitpress.mit.edu/books/cybernetics-group

Constructing a Social Science for Postwar America

The Cybernetics Group, 1946–1953

By Steve Joshua Heims

https://mitpress.mit.edu/books/constructing-social-science-postwar-america

https://pdfs.semanticscholar.org/396a/f617fb699b71d3a7ecb44c5a8a39d7c69d31.pdf?_ga=2.252779531.343517398.1572734637-1265037359.1572734637

 

John Von Neumann and Norbert Weiner

From Mathematics to the Technologies of Life and Death

Steve Heims

https://mitpress.mit.edu/books/john-von-neumann-and-norbert-weiner

Cybernetics

THE MACY CONFERENCES 1946-1953. THE COMPLETE TRANSACTIONS

EDITED BY CLAUS PIAS

 

https://www.press.uchicago.edu/ucp/books/book/distributed/C/bo23348570.html

 

 

 

Do Cyborgs Dream of Electronic Rats? The Macy Conferences and the Emergence of Hybrid Multi-Agent Systems

 

Samuel Gerald Collins

 

Click to access FS07-04-005.pdf

 

 

Macy conferences

https://en.wikipedia.org/wiki/Macy_conferences

 

 

Cybernetics

https://en.wikipedia.org/wiki/Cybernetics

History of Cybernetics

American Society of Cybernetics

http://www.asc-cybernetics.org/foundations/history.htm

 

History of Cybernetics and Systems Science

http://pespmc1.vub.ac.be/CYBSHIST.html

 

 

HISTORY OF CYBERNETICS
Additional Reference Resources

http://www.asc-cybernetics.org/foundations/historyrefs.htm

The Macy Story

https://macyfoundation.org/news-and-commentary/the-macy-story

 

 

The Next Macy Conference: A New Interdisciplinary Synthesis [Keynote]

September 2015

Andrew Pickering

 

https://www.researchgate.net/publication/281896821_The_Next_Macy_Conference_A_New_Interdisciplinary_Synthesis_Keynote

 

 

A Brief History of (Second-Order) Cybernetics

Louis Kauffman
Stuart Umpleby

https://www.researchgate.net/publication/319751991_A_Brief_History_of_Second-Order_Cybernetics

 

 

A Short History of Cybernetics in the United States

The Origin of Cybernetics

 

Stuart Umpleby

 

Click to access 4566_oezg4_08_s28_40_umpleby_1_.pdf

 

 

 

Analog, digital, and the cybernetic illusion

Claus Pias

 

Click to access kybernetes.pdf

 

 

 

 

GREGORY BATESON, CYBERNETICS, AND THE SOCIAL/BEHAVIORAL SCIENCES

 

Click to access gbcatsbs.pdf

 

 

Cybernetics: A General Theory that Includes Command and Control

Stuart Umpleby

 

Click to access 076.pdf

 

The Future of Cybernetics

Click to access Pangaro-Nano-2018.pdf

 

 

John Bowlby: Rediscovering a systems scientist

Gary S. Metcalf, PhD

January 7, 2010

 

Click to access John_Bowlby_-_Rediscovering_a_systems_scientist.pdf

 

 

REBEL GENIUS: WARREN MCCULLOCH’S TRANSDISCIPLINARY LIFE IN SCIENCE

By Tara H. Abraham

2016 MIT Press: Cambridge, MA, USA

ISBN: 9780262035095

 

Click to access The%20prophet%20who%20foretold%20our%20future%202018-4523.pdf

 

 

 

Where are the Cyborgs in Cybernetics?

Ronald Kline

 

Click to access Where-are-the-Cyborgs-in-Cybernetics-Kline.pdf

 

 

SECOND ORDER CYBERNETICS

Ranulph Glanville

 

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.645.9031&rep=rep1&type=pdf

 

 

The Road to Servomechanisms: The Influence of Cybernetics on Hayek

from The Sensory Order to the Social Order

Gabriel Oliva

 

Click to access The%20Road%20to%20Servomechanisms.pdf

 

 

Cybernetics Revolutinaries

Click to access Eden_Medina_Cybernetic_Revolutionaries.pdf

 

 

 

CYBERNETICS AND THE MANGLE: ASHBY, BEER AND PASK*

Andrew Pickering

http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.15.882&rep=rep1&type=pdf

 

 

 

 

Cybernetics Page at Monoskop.org

https://monoskop.org/Cybernetics

 

 

 

The Cybernetics Brain

Andrew Pickering

 

 

 

HISTORY OF CYBERNETICS

R. Vallée

Université Paris-Nord, France

 

Click to access E6-46-03-01.pdf

Socio-Cybernetics and Constructivist Approaches

Socio-Cybernetics and Constructivist Approaches

There are two related concepts.

  • Socio-Cybernetics
  • Constructivist Approaches

Will appeal to people interested in Philosophy, Cybernetics, and Systems Theory.

A. Socio Cybernetics

Socio-cybernetics can be defined as “Systems Science in Sociology and Other Social Sciences” – systems science, because sociocybernetics is not limited to theory but includes application, empirical research, methodology, axiology (i.e., ethics and value research), and epistemology. In general use, “systems theory” and “cybernetics” are frequently interchangeable or appear in combination. Hence, they can be considered as synonyms, although the two terms come from different traditions and are not used uniformly in different languages and national traditions. Sociocybernetics includes both what are called first order cybernetics and second order cybernetics. Cybernetics, according to Wiener´s original definition, is the science of “control and communication in the animal and the machine”. Heinz von Foerster went on to distinguish a first order cybernetics, “the study of observed systems”, and a second order cybernetics, “the study of observing systems”. Second order cybernetics is explicitly based on a constructivist epistemology and is concerned with issues of self-reference, paying particular attention to the observer-dependence of knowledge, including scientific theories. In the interdisciplinary and holistic spirit of systems science, although sociology is clearly at the centre of interest of sociocybernetics, the other social sciences, such as psychology, anthropology, political science, economics, are addressed as well, with emphases depending on the particular research question to be dealt with.

 

SOCIOCYBERNETICS traces its intellectual roots to the rise of a panoply of new approaches to scientific inquiry beginning in the 1940’s. These included General System Theory, cybernetics and information theory, game theory and automata, net, set, graph and compartment theories, and decision and queuing theory conceived as strategies in one way or another appropriate to the study of organized complexity. Although today the Research Committee casts a wide net in terms of appropriate subject matters, pertinent theoretical frameworks and applicable methodologies, the range of approaches deployed by scholars associated with RC51 reflect the maturation of these developments. Here we find, again, GST and first- and second-order cybernetics; in addition, there is widespread sensitivity to the issues raised by “complexity studies,” especially in work conceptualizing systems as self-organizing, autocatalytic or autopoietic. “System theory”, in the form given it by Niklas Luhmann, and world-systems analysis are also prominently represented within the ranks of RC51. The institutionalization of sociocybernetic approaches in what was to become RC51, the Re-search Committee on Sociocybernetics of the International Sociological Association, began in 1980 with the founding of an ISA Ad Hoc Group and proceeded with the organization of ses-sions at succeeding quadrennial World Congresses of Sociology. The eventual RC51 became a Thematic Group and then a Working Group. Finally, in recognition of its extraordinary success (growing from some 30 members in early 1995 to 240 in 1998), the group was promoted to the status of Research Committee at the 1998 World Congress of Sociology in Montreal. Over these past two decades, sociocybernetics has attracted a broad range of scholars whose departmental affiliations represent the entire spectrum of the disciplines, from the humanities and the social sciences through the sciences, mathematics and engineering. Furthermore, the many countries of origin of these RC51 members attest to the wide international appeal of sociocybernetic approaches. Within this highly diverse community, there is wide agreement on some very general issues, for instance, on developing strategies for the study of human reality that avoid reification, are cognizant of the pitfalls of reductionism and dualism, and generally eschew linear or homeostatic models. Not surprisingly, however, there are also wide divergences in subject matter, theoretical frameworks and methodological practices. Many have argued that models developed for the study of complexity can be usefully appropriated for the study of human reality. Moreover, however, the emphasis in complexity studies on contingency, context-dependency, multiple, overlapping temporal and spatial frameworks, and deterministic but unpredictable systems displaying an arrow-of-time suggest that the dividing line between the sciences and the historical social sciences is fuzzier than many might like to think. What is more, in the humanities, the uniquely modern concepts of original object and autonomous human creator have come under serious attack. The coincidence of these two phenomena substantiate the impression that across the disciplines there may be observed a new concern for spatial-temporal wholes constituted at once of relational structures and the phenomenological time of their reproduction and change. In this context of rich history and exciting possibilities, the Research Committee on Sociocybernetics of the International Sociological Association extends an open invitation through the Journal of Sociocybernetics to all engaged in the common quest to explain and understand social reality holistically and self-reflexively without forsaking a concern for human values–human values not construed simply as a matter of individual ethics, but conceived as an integral part of a social science for our time.

 

 

B. Constructivist Foundations

Constructivist Foundations (CF) is an international peer-reviewed e-journal focusing on the multidisciplinary study of the philosophical and scientific foundations and applications of constructivism and related disciplines. The journal promotes interdisciplinary discussion and cooperation among researchers and theorists working in a great number of diverse fields such as artificial intelligence, cognitive science, biology, neuroscience, psychology, educational research, linguistics, communication science, sociology, mathematics, computer science, and philosophy.

Constructivist approaches covered in the journal include the theory of autopoietic systems, enactivism, radical constructivism, second-order cybernetics, neurophenomenology, constructionism, and non-dualizing philosophy.

 

Constructivist Approaches

Constructivist approaches support the idea that mental structures such as cognition and perception are actively built by one’s mind rather than passively acquired. However, constructivist approaches vary in function of how much influence they attribute to constructions.

Many assume a dualistic relationship between reality and constructed elements. They maintain that constructed mental structures gradually adapt to the structures of the real world (e.g., Piaget). In this view perception is the pickup of information controlled by the mental structure that is constructed from earlier perceptions (e.g., Neisser). This leads to the claim that mental structures are about learning sensorimotor contingencies (e.g., O’Regan).

Others seek to avoid the dualistic position. Either they skeptically reject that the structures of the real world can be compared with mental ones, independently of the senses through which the mental structures were constructed in the first place (e.g., von Glasersfeld), or they embrace a phenomenological perspective that considers perception as the grouping of experiential complexes (e.g., Mach).

All these approaches emphasize the primacy of the cognitive system (e.g., Llinás) and its organizational closure (e.g., von Foerster, Maturana). Hence, perceived patterns and regularities may be regarded as invariants of inborn cognitive operators (e.g., Diettrich).

Constructivist approaches can be said to differ also with respect to whether constructs are considered to populate the rational-linguistic (e.g., von Glasersfeld, Schmidt) or the biological-bodily (“enactivist/embodied” theories, e.g., Varela).

 

Common Denominators of Constructivist Approaches

The common denominators of constructivist approaches can be summarized as follows.

  • Constructivist approaches question the Cartesian separation between the objective world and subjective experience;
  • Consequently, they demand the inclusion of the observer in scientific explanations;
  • Representationalism is rejected; knowledge is a system-related cognitive process rather than a mapping of an objective world onto subjective cognitive structures;
  • According to constructivist approaches, it is futile to claim that knowledge approaches reality; reality is brought forth by the subject rather than passively received;
  • Constructivist approaches entertain an agnostic relationship with reality, which is considered beyond our cognitive horizon; any reference to it should be refrained from;
  • Therefore, the focus of research moves from the world that consists of matter to the world that consists of what matters;
  • Constructivist approaches focus on self-referential and organizationally closed systems; such systems strive for control over their inputs rather than their outputs;
  • With regard to scientific explanations, constructivist approaches favor a process-oriented approach rather than a substance-based perspective, e.g. living systems are defined by the processes whereby they constitute and maintain their own organization;
  • Constructivist approaches emphasize the “individual as personal scientist” approach; sociality is defined as accommodation within the framework of social interaction;
  • Finally, constructivist approaches ask for an open and less dogmatic approach to science in order to generate the flexibility that is needed to cope with today’s scientific frontiers.

 

Key People:

  • Felix Geyer
  • Ernst Von Glasersfeld
  • H Maturana
  • F Varela
  • Heinz Von  Foerster
  • Niklas Luhmann

 

 

Key Sources of Research:

 

Constructivist Foundations (CF)

http://www.univie.ac.at/constructivism/journal/

Click to access riegler2005editorial.pdf

Click to access denominator.pdf

 

 

The role of sociocybernetics in understanding world futures 

Bernard Scott

Click to access 1794.pdf

 

 

PRINCIPLES OF SOCIOCYBERNETICS

Bernd R. Hornung

 

Click to access hornung.pdf

 

 

JOURNAL OF SOCIOCYBERNETICS

 

Click to access JoS6-2-2008.pdf

Click to access JoS7-2-2009.pdf

 

 

THE CHALLENGE OF SOCIOCYBERNETICS

FELIX GEYER

http://www.unizar.es/sociocybernetics/chen/felix/pfge2.html

 

 

SOCIOCYBERNETICS

Felix Geyer and Johannes van der Zouwen

http://www.unizar.es/sociocybernetics/chen/felix/pfge8.html

 

 

JOURNAL OF SOCIOCYBERNETICS

https://sociocybernetics.wordpress.com/journal-of-sociocybernetics/